Introduction

20th of July 2016

Document and calculations made by Wouter Meindertsma - w.meindertsma@ecofys.com
Reviewed by Caspar Noach and Heleen Groenenberg, with input from Willemijn Pouwels and Sven Schimschar

sustainable energy for everyone

Purpose of this document

The ING Bank N.V. asked Ecofys to make an impact measurement of their Green Bond. This impact measurement includes the avoided CO₂ equivalent emissions of selected projects financed through ING's Green Bond for 2016. This document contains the impact calculations and their results. All calculations have been based on data from ING, public sources and Ecofys expertise. Sources, assumptions and estimates are all clearly indicated in the calculations and listed at the bottom of this sheet. In addition, Ecofys has downloaded and saved copies of online sources, which are available upon request.

If it was not possible to make a reasonable calculation of the avoided emissions of a project, this has been clearly explained in the analysis.

All avoided greenhouse gas emissions are expressed in CO₂ equivalents (CO₂eq). CO2 equivalent is a metric measure used to compare the emissions from various greenhouse gases based upon their global warming potential (GWP). For instance, over a period of 100 year releasing 1 tonne of methane in the

Below under the aggregated results of the calculations are included, showing the total annual avoided emissions per project category and per project. Using the total value on ING's balance, the emission factor is calculated per category and as a total, for comparison purposes. The emission factor is negative, because we are talking about avoided emissions.

At the bottom, under heading 'Admin' are shown the emission factors, conversion factors and other constants

Methodological choices and assumptions

The calculations are valid for Q2 2016 and assume that all projects will be operational during the full year. For some projects, this will lead to inaccuracies, because ING Bank has only financed them during a part of the year. This could lead to inaccuracies for projects that have started to receive finance in 2016. However, if ING Bank continues financing the projects included in this calculations, the calculated annual avoided emissions remain valid.

The calculations also don't take the lead time of a project into account (i.e. the time it takes between financing and the project becoming operational).

Conservative calculations

Ecofys takes a conservative approach for calculating the avoided emissions calculations for ING Bank. We do this to prevent the ING Bank from being accused of green washing, to make it easier to audit the calculations, and to avoid the risk of 'overstating' results and having to recalibrate them to a lower figure if new insights become available. We often indicate in the calculations where we take a conservative approach.

Avoided emissions from renewable electricity production

The avoided emissions from the production of renewable electricity are calculated by assuming that the introduction of renewable electricity pushes grey electricity (based on fossil fuels) of the grid. We calculate the avoided emissions by multiplying the produced electricity with the emission factor for grey electricity for the country in which the electricity is produced.

The emission factors for grey electricity for the different countries is obtained from calculations based on information from the International Energy Agency.

Uncertainties

In making these calculations, we depend on the accuracy of the information we receive from ING and that we can find in public sources. It is important to realise that modeling avoided emissions has inherent uncertainties. We have introduced low end emissions to show what the emissions could be in a more pessimistic scenario.

The calculations for low end avoided emissions are based on a better performance of the installations. Alternatively, a low end estimate could have been established by using a lower emission factor. An important driver behind the avoided emissions is the use of average grey electricity being pushed of the grid. In reality, it will probably be baseload coal fired power plants that will remain on the grid, while natural gas fired powerplants will be the "marginal" power plants that are switched off as soon as a lot of renewable electricity enters the grid (in the near future). Therefore, one could argue that instead of calculating with grey you should calculate with the emissions of gas fired power plants to calculate the (low end) avoided emissions.

Wind and solar energy calculations

To the extent that ING did not provide the actual production of wind energy, we calculated the annual electricity production by using an estimate of the full load hours for onshore and offshore wind energy based on Ecofys experience and the European Wind Energy Association (EWEA).

The alternative annual avoided emissions for wind energy have been obtained from online figures on avoided emissions or produced electricity.

When calculating the electricity produced from solar projects, we have used the PVWatts calculator from National Renewable Energy Laboratory (NREL). The selections that we made in these calculations (type of solar cell, tracking system, etc.) has been provided in the blue "Solar" tab.

The value chain emissions of neither wind and solar energy nor for fossil energy is taken into account.

Waste to energy calculations

As a first step, the capacity of the installations has been divided proportionally over electricity and gas production. The accuracy of the calculations would improve if the actual electricity or gas production of these installations was used.

We assume that the emissions from electricity produced from waste are the same as for the production of grey electricity, but only take half of those emissions because we assume that the waste contains 50% biogenic material.

For the emissions from the combustion of biogenic material and for the gas captured from landfills, an emission factor of 0 is used because the emissions are biogenic and thus short cycled (the carbon does not originate from fossil fuels but from organic material, not adding any net carbon to the atmosphere).

The fact that methane is captured from landfills that would otherwise be released in the atmosphere, is not taken into account. Due to the high global warming potential of methane, this would likely lead to higher avoided emissions than currently calculated. This makes our results conservative.

It is not unlikely that the production of energy from the incineration of municipal waste or from the combustion of gas from landfil sites also leads to the production of heat. If this heat is fed in a district heating network, this could reduce the demand for natural gas and hence lead to reduced emissions. This is not taken into account in our calculations. This makes our calculations more conservative.

Allocating emissions to ING

ING often finances part of a project. As such, ING is only responsible for a share of the avoided emissions from this project. This share has been calculated by dividing ING's outstanding loan by the total capital investment costs of the project (CAPEX). As outstanding loan we have used the max limit from ING's systems, which stand for the maximum amount of money that is specifically allocated to this project. As the loan gets paid back, the max limit decreases and ING's share in the project decreases accordingly. This is standard practise in carbon accounting.

the project decreases accordingly. This is standard practise in carbon accounting.

It is possible that the client increases the max limit during the course of the loan. In that case, the share of ING can become higher than 100%. We have capped the share of ING at 100% to make sure that no more avoided emissions are allocated to ING than is realistic.

If ING participates in the acquisition of a project, we took this into account when determining the share of the project financed by ING.

Sector	Number of projects in climate impact calculation		Annual avoided emissions (kton CO2eq)	Average emission factor (kton CO2eq per M€)	Annual avoided emissions (equivalent Dutch households)
Wind	8	401	429	-1,069	53.579
Solar	5	314	224	-0,713	27.954
Waste to energy	1	5	3,8	-0,838	472
Total	14	719	656	-0.912	82.005

Nr	Project type	Total value on ING balance (M€)	Annual avoided emissions (kton CO2eq)
		()	(55264)
1	Wind	33	52
2	Wind	97	159
3	Wind	32	35
4	Wind	51	44
5	Wind	46	34
6	Wind	26	12
7	Wind	78	58
8	Wind	38	35
	Total	401	429
1	Solar	60	29
2	Solar	43	11
3	Solar	31	10
4	Solar	135	134
5	Solar	45	40
	Total	314	224
1	Waste to energy	5	3,8
	Total	5	3,8

Emission factor (kton CO2eq per MC) -1,58 -1,64 -1,09 -0,87 -0,73 -0,44 -0,75 -0,92 -0,48 -0,26 -0,31 -0,99 -0,99

-0,84

Admin

Emission factors	Value	Unit	Source	Remarks
Emission factors electricity				
Australia	925	kg CO ₂ eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used
Belgium	467	kg CO ₂ eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used
France	817	kg CO ₂ eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used
Germany	817	kg CO ₂ eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used
Italy	598	kg CO ₂ eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used
Netherlands	519	kg CO₂eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used
Poland	988	kg CO ₂ eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used
Portugal	620	kg CO₂eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used
Sweden	985	kg CO ₂ eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used
United Kingdom	623	kg CO₂eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used
United States	759	kg CO₂eq/MWh	IEA overview of countries 2011	Total fossile power generation data were used.
				For the US we take only one emission factor for
				grey electricity instead of looking at the emission
				factors for specific states. To improve the
				accuracy of the results, we recommend using
EF Passenger car The Netherlands	0.220	kg CO₂eg/pkm	CO2 emissiefactoren.nl	Regardless of the type of fuel and weight of car
EF Bus The Netherlands		kg CO₂eq/pkm	CO2 emissiefactoren.nl	Regardless of the type of fuel and weight of car
EF National rail UK		kg CO₂eq/pkm	DEFRA 2015 - national rail	Regardless of the type of fuel and weight of car
EF Natural gas per GJ		kg CO₂eq/pkiii kg CO₂eq/GJ	http://www.ipcc-nggip.iges.or.jp/pu	hlio/2006al/vol2 html
EF Natural gas per MWh		kg CO₂eq/G3	Calculation Ecofys	Julic/2006gi/Vol2.Html
EF Natural gas per wwwn	202,1	kg CO ₂ eq/ivivv11	Calculation Ecolys	
Emission factor intercontinental flights	147	gram CO ₂ /km	http://CO2eqmissiefactoren.nl/lijst	-emissiefactoren/#totale_lijst
Flight distance Amsterdam - New York	6.000	km	Assumption Ecofys, based on http://www.prokerala.com/travel/flight-time/from-	
amsterdam/to-new-york/		·		
Emission factor flight Amsterdam - New York	0,9	ton CO₂eq		
Emissions of a Dutch household	Ω	ton CO ₂ eq	www.milieucentraal.nl/klimaat-en-	aarde/klimaatverandering/bereken-je-co2-uitstoot/

Conversion units	Value	Source		
kg per ton	1.000			
kWh per MWh	1.000			
EUR per GBP	1,293	http://www.xe.com/currencyconverter/convert/?From=GBP&To=EUR, checked on 02-03-2016		
EUR per USD	0,922	http://www.xe.com/currencyconverter/convert/?From=EUR&To=USD, checked on 02-03-2016		
GJ per MWh	3,6			

Other parameters	Value	Source				
Full load hours solar						
		Conservative estimate Ecofys. We found several online sources claiming 4 to 5 full load solar hours per day				
United States	1.400	across the USA.				
United Kingdom	1.000	Estimate Ecofys				
Italy	1.300	Estimate Ecofys				
France	1.100	Estimate Ecofys				
Full load hours waste to energy		Ecofys estimate. Technically it could be 7,500, but it depends upon the supply of waste and the demand for				
		energy. We choose 4,000 to be on the conservative side. This is assumed to be valid for both electricity as well				
Full load hours onshore wind energy	2.500	Estimate Ecofys (Erik Holtslag september 2015), based on EWEA report 2009				
Full load hours offshore wind energy	3.650	Estimate Ecofys (Erik Holtslag september 2015), based on EWEA report 2009				